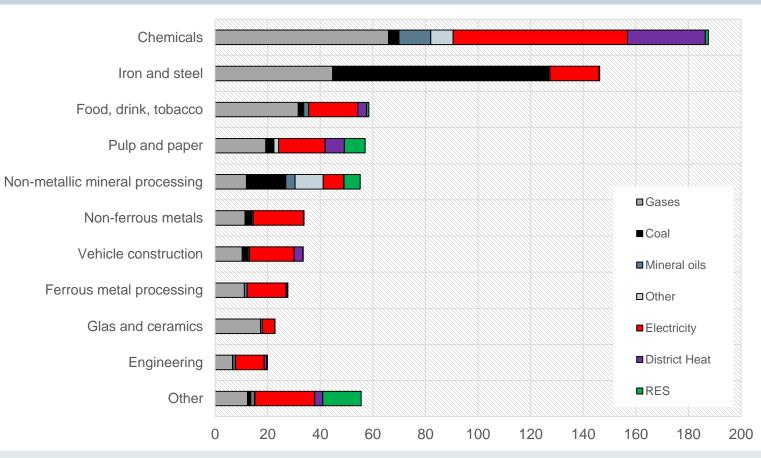
Pathways to deep decarbonisation of the industry sector: Potentials and challenges for chemicals and steel production

Dr. Andrea Herbst, Dr. Matthias Rehfeldt Fraunhofer Institute for Systems and Innovation Research ISI

GEFÖRDERT VOM


INDUSTRY IS RESPONSIBLE FOR ABOUT 23% OF GHG EMISSIONS IN GERMANY

70 % of industrial energy demand is generated in energy-intensive industries

118 Mt-CO2eq. in 2030 as interim target for industry Reduction of ~57 percent compared to 1990

Technology paths and political framework still under discussion

One third of industrial FED is covered by **natural gas today + feedstock**

German industrial final energy consumption by economic sector (2019) [TWh]

Source: AGEB 2020, own illustration

GEFÖRDERT VOM

ALTERNATIVE PATHWAYS TO A NEAR CARBON-NEUTRAL INDUSTRIAL PRODUCTION

All GHG-neutral Scenarios										
 GHG reduction in the industrial sector >95%. Ambitious energy and material efficiency + high shares of secondary production Avoid use of biomass in technology focus scenarios Avoid large scale CCS 										
Mix	Electrificat	tion	Hydrogen	E-Fuel	ls					
 No clear technology focus 	 Direct electric solutions preferred Hydrogen as feedstock 		 Hydrogen widely available Use preferred in terms of energy and feedstock 	 Synthetic methane available Preferred for ener feedstock 						
	Sov									
		I gas bridge" is calle confidence in natur source								
	• Change of comp	es in the production	and investment behaviour							
	Sildung Forschung									

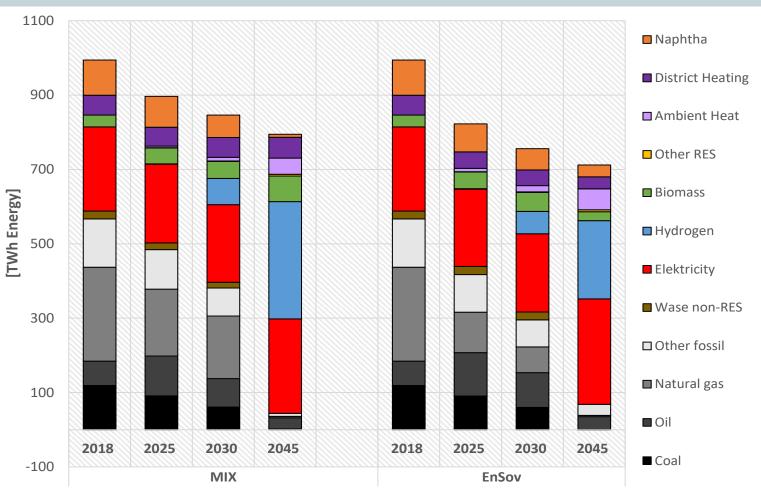
ALTERNATIVE PATHWAYS TO A NEAR CARBON-NEUTRAL INDUSTRIAL PRODUCTION

All GHG-neutral Scenarios									
 GHG reduction in the industrial sector >95%. Ambitious energy and material efficiency + high shares of secondary production Avoid use of biomass in technology focus scenarios Avoid large scale CCS 									
Mix		Electrification	Hydrogen		E-Fuels				
 No clear technology focus 	preferred	ectric solutions d n as feedstock	 Hydrogen widely available Use preferred in terms of energy and feedstock 		 Synthetic methane widely available Preferred for energy and feedstock 				
			EnSov						
 "Natural gas bridge" is called into question 									
Loss of confidence in natural gas as a reliable									
	^{ÖRDERT VOM} ndesministerium Bildung d Forschung	 energy source Changes in the product of companies 	tion and investment behaviour						

MIX & EnSov (DE, 2018-2045) [TWh] 1100 Naphtha District Heating 900 Ambient Heat Other RES 700 Biomass [TWh Energy] Hydrogen 500 Elektricity ■ Wase non-RES 300 □ Other fossil Natural gas 100 ■ Oil 2025 2030 2045 2045 2018 2018 2025 2030 Coal -100 ΜΙΧ EnSov

Industrial energy consumption: energtic and feedstock

Energy & material efficiency, circular economy and CCU/S


GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Energy & material efficiency, circular economy and CCU/S

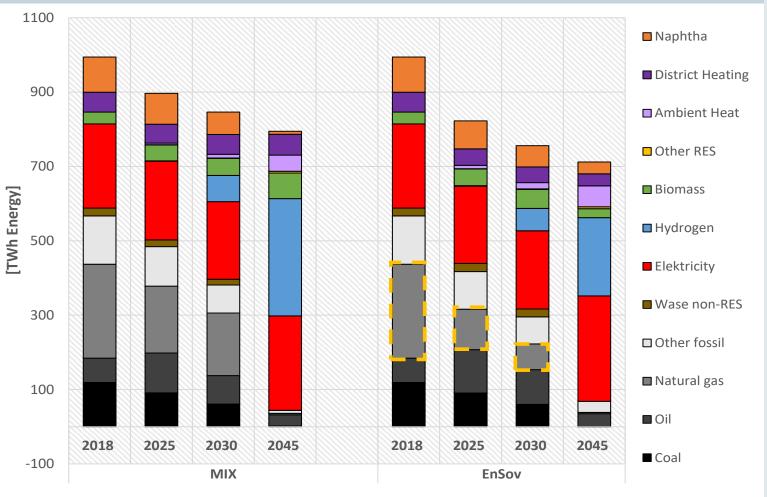
20 - 30 % demand reduction in 2045 Energy and material efficiency, especially activity effects Industrial energy consumption: energtic and feedstock MIX & EnSov (DE, 2018-2045) [TWh]

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Energy & material efficiency, circular economy and CCU/S

20 - 30 % demand reduction in 2045 Energy and material efficiency, especially activity effects


Strong reaction to price signals Leads to permanent decline in natural gas demand

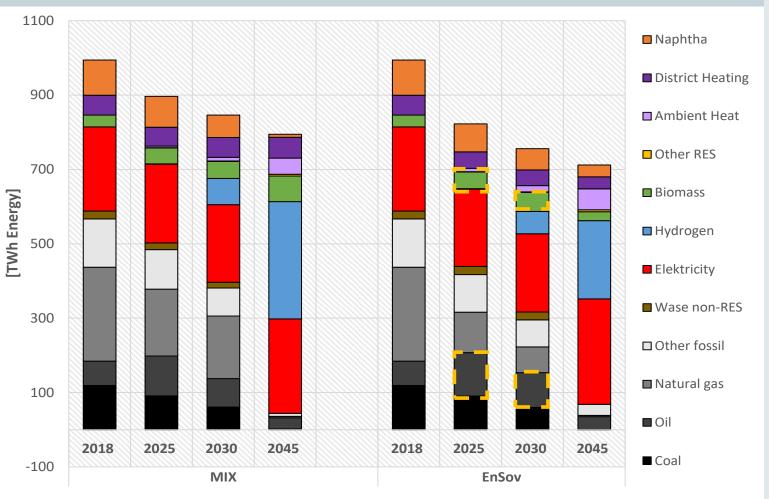
GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Energy & material efficiency, circular economy and CCU/S

20 - 30 % demand reduction in 2045 Energy and material efficiency, especially activity effects

Strong reaction to price signals Leads to permanent decline in natural gas demand


Conventional fuel switch Evasive movement to oil & biomass

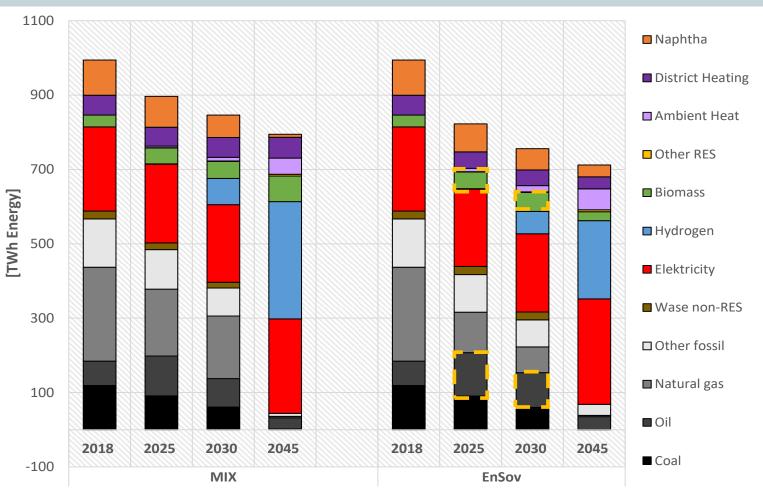
GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Industrial energy consumption: energtic and feedstock MIX & EnSov (DE, 2018-2045) [TWh]

Energy & material efficiency, circular economy and CCU/S

20 - 30 % demand reduction in 2045 Energy and material efficiency, especially activity effects

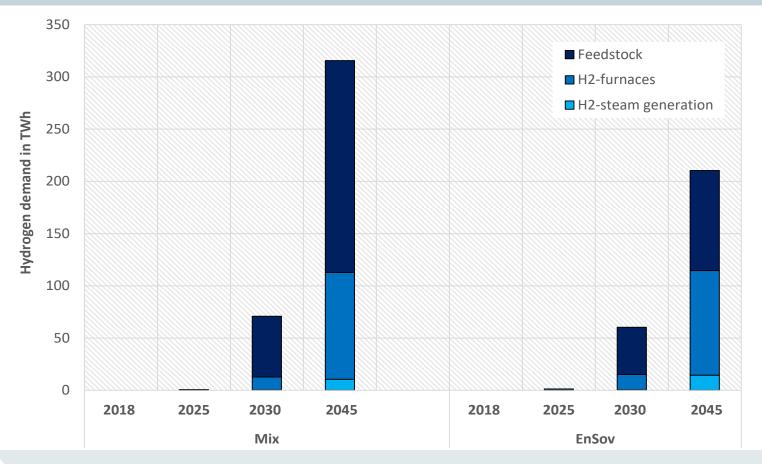

Strong reaction to price signals Leads to permanent decline in natural gas demand

Conventional fuel switch Evasive movement to oil & biomass

Electrification

Faster electrification of process heat hybrid-systems, partial-electrification

Industrial energy consumption: energtic and feedstock MIX & EnSov (DE, 2018-2045) [TWh]



ROBUST HYDROGEN DEMAND IN THE STEEL AND CHEMICAL INDUSTRY

MIX Scenario in 2045

- > Steel: ~50 TWh in 2045
- > Chemical feedstock: ~200 TWh
- Demand distributed among
 few industrial locations

Hydrogen demand by end-use and scenario (2018 – 2045) [TWh]

GEFÖRDERT VOM

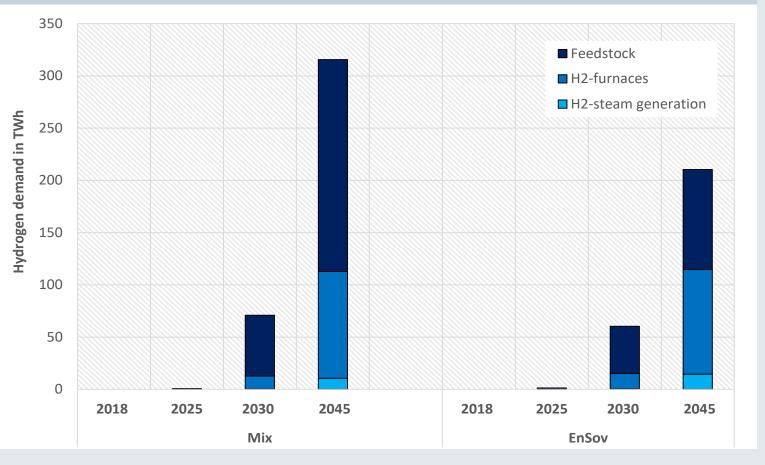
Bundesministerium für Bildung und Forschung

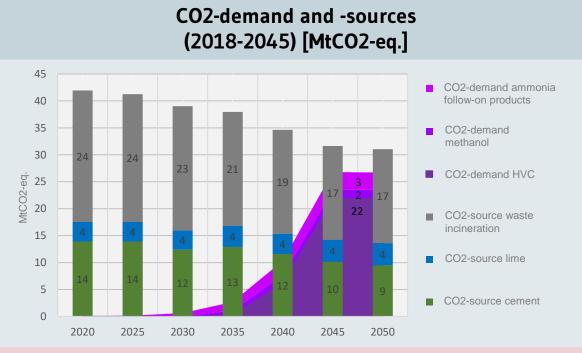
ROBUST HYDROGEN DEMAND IN THE STEEL AND CHEMICAL INDUSTRY

MIX Scenario in 2045

- > Steel: ~50 TWh in 2045
- > Chemical feedstock: ~200 TWh
- Demand distributed among
 few industrial locations

Use for remaining process heat


- > Furnaces: ~50 TWh
- > Steam: ~ 10 TWh
- => 316 TWh total hydrogen demand


Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

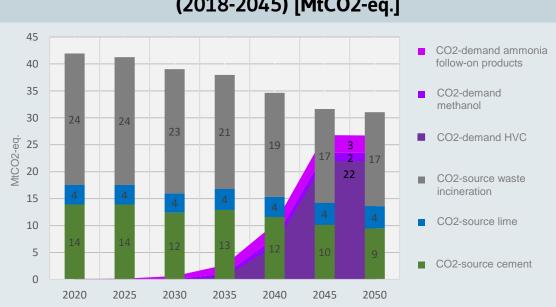
Hydrogen demand by end-use and scenario (2018 – 2045) [TWh]

CO2 BECOMES RAW MATERIAL FOR THE CHEMICAL INDUSTRY – CCUS STRATEGY

~30 Mt CO2-demand for Methanol/HVC

14 sites across Germany

~30-33 Mt CO2-sources


Cement: ~9-10 Mt, 32 sites; Lime: ~4 Mt, 52 sites; Waste: 17 Mt, 55 sites

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung Source: Fraunhofer ISI - Langfristszenarien.

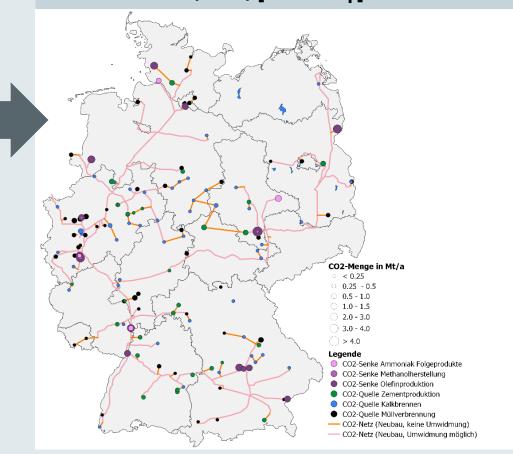
CO2 BECOMES RAW MATERIAL FOR THE CHEMICAL INDUSTRY – CCUS STRATEGY

CO2-demand and -sources (2018-2045) [MtCO2-eq.]

~30 Mt CO2-demand for Methanol/HVC

14 sites across Germany

~30-33 Mt CO2-sources


Cement: ~9-10 Mt, 32 sites; Lime: ~4 Mt, 52 sites; Waste: 17 Mt, 55 sites

GEFÖRDERT VOM

KOPERNIKUS Ariadne PROJEKTE Die Zukunft unserer Energie

Bundesministerium für Bildung und Forschung

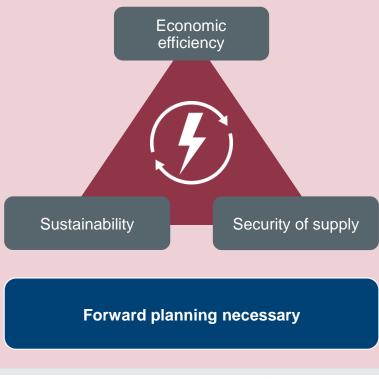
CO2-demand and -sources (2045) [MtCO2-eq.]

Source: Fraunhofer ISI - Langfristszenarien

THE GERMAN 'INDUSTRIEWENDE' STARTS WITH THE TRANSFORMATION OF THE STEEL INDUSTRY FROM BLAST FURNACE TO IRON ORE DIRECT REDUCTION WITH HYDROGEN

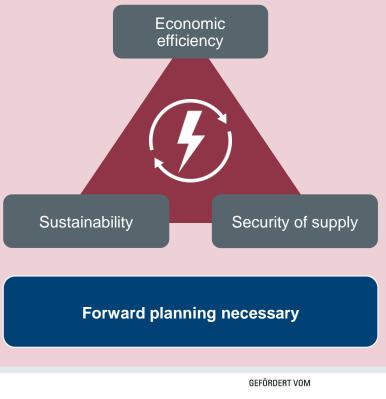
Announcements of ~€15 bn investments:

>10 Mtpa crude steel production capacity converted to direct reduction by 2030 (~1/3 of current blast furnaces).


KOPERNIKUS Ariadne PROJEKTE Die Zukunft unserer Energie

Potential success factors:

- **Technologies 'available'** and tested (direct reduction of iron ore using natural gas)
- Technological alternatives are more uncertain
- Flexible operation using natural gas/hydrogen enables lower-risk conversion and increases security of supply
- **Support programmes** enable investments
- **Demand for green steel** is emerging, e.g. from the automotive industry
- Window of opportunity for upcoming modernisations


Goal triangle of industrial transformation

GEFÖRDERT VOM

Goal triangle of industrial transformation

Early replacement:

Instruments should push the rapid entry into electrification via hybrid system concepts - e.g. through investment subsidies.

Goal triangle of industrial transformation

Early replacement:


Instruments should push the rapid entry into electrification via hybrid system concepts - e.g. through investment subsidies.

Increasing economic efficiency of electrical process heat generation:

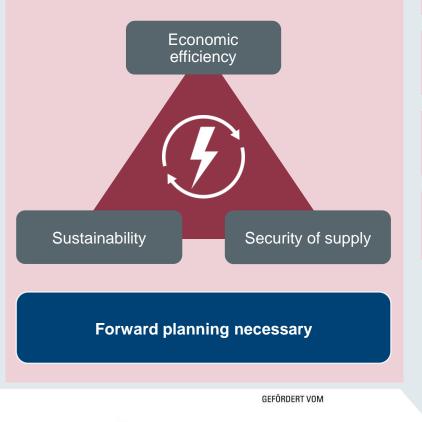
So that it can be chosen for the many upcoming replacement investments.

Goal triangle of industrial transformation

KOPERNIKUS Ariadne PROJEKTE Die Zukunft unserer Energie Bundesministerium für Bildung und Forschung

Early replacement:

Instruments should push the rapid entry into electrification via hybrid system concepts - e.g. through investment subsidies.


Increasing economic efficiency of electrical process heat generation:

So that it can be chosen for the many upcoming replacement investments.

Strong and reliable CO2 price signal:

To displace particularly CO2-intensive energy sources.

Goal triangle of industrial transformation

Bundesministerium für Bildung und Forschung

Early replacement:

Instruments should push the rapid entry into electrification via hybrid system concepts - e.g. through investment subsidies.

Increasing economic efficiency of electrical process heat generation:

So that it can be chosen for the many upcoming replacement investments.

Strong and reliable CO2 price signal:

To displace particularly CO2-intensive energy sources.

Accelerate the development and deployment of CO2-neutral processes: Iron and steel production, basic chemicals and non-metallic minerals.

Goal triangle of industrial transformation

Early replacement:

Instruments should push the rapid entry into electrification via hybrid system concepts - e.g. through investment subsidies.

Increasing economic efficiency of electrical process heat generation: So that it can be chosen for the many upcoming replacement investments.

Strong and reliable CO2 price signal:

To displace particularly CO2-intensive energy sources.

Accelerate the development and deployment of CO2-neutral processes: Iron and steel production, basic chemicals and non-metallic minerals.

Investments in renewables, electrolysis capacities and infrastructure: e.g. grid connection capacity at the site, H2-/CO2-infrastructure

GEFÖRDERT VOM

Goal triangle of industrial transformation

Early replacement:

Instruments should push the rapid entry into electrification via hybrid system concepts - e.g. through investment subsidies.

Increasing economic efficiency of electrical process heat generation: So that it can be chosen for the many upcoming replacement investments.

Strong and reliable CO2 price signal:

To displace particularly CO2-intensive energy sources.

Accelerate the development and deployment of CO2-neutral processes: Iron and steel production, basic chemicals and non-metallic minerals.

Investments in renewables, electrolysis capacities and infrastructure: e.g. grid connection capacity at the site, H2-/CO2-infrastructure

Implementation of CO2 price signals along the value chains e.g. GHG-labelling, green lead markets.

Die Zukunft unserer Energie

Ariadne

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

THANK YOU FOR YOUR ATTENTION!

Dr. Andrea Herbst

Competence Center Energy Technology and Energy Systems Fraunhofer Institute for Systems and Innovation Research ISI Breslauer Straße 48 | 76139 Karlsruhe | Germany Phone +49 721 6809-439 | Fax +49 721 6809-439 mailto: <u>andrea.herbst@isi.fraunhofer.de</u> <u>https://www.isi.fraunhofer.de/de/themen/wasserstoff.html</u> <u>http://www.forecast-model.eu</u>

GEFÖRDERT VOM

ISI

Fraunhofer

