Decarbonisation scenarios for the European steel industry

Workshop Decarbonisation of EU project CORALIS "Industrial symbiosis in energy intensive industries"

19.12.2022 Web Workshop

Dr. Thorsten Hauck * Dr. Tobias Kempken

VDEh-Betriebsforschungsinstitut GmbH

- > Short introduction BFI
- > Overview Project "Green Steel for Europe"
- > Decarbonisation scenarios of project "Green Steel for Europe"
- Latest developments and aspects of industrial symbiosis for decarbonisation of steel industry

BFI - short introduction

- > Private, non-profit institute for applied R&D in steel industry and process industries
- > Large national and international **network** (research & industry)
- > Approx. 100 employees, 70% academics and post-docs
- > 4 strategic fields of activities:
 - 1. Decarbonisation and Energy Efficiency,
 - 2. Digitalisation, Industry 4.0 and Measurement Technologies,
 - 3. Circular Economy,
 - 4. Process Innovation and Process Optimisation.

GmbH

VDEh-Betriebsforschungsinstitut

Bei

Excellence in

Objectives

Nkeholders Ng WP2 Investment and Funding WP3 Impact Assessment

WP4 Dissemination & Stakeholder Engagement

WP5 Project Management

plan technological transformation

This project has received funding from the European Union under grant agreement NUMBER — 882151 — GREENSTEEL

- \checkmark identify decarbonisation barriers
- ✓ support communication between stakeholders
- rate investment demands and funding mechanisms
- ✓ evaluate & recommend policy options

Overview project Green Steel for Europe 1/2020 - 10/2021

Approach for Technology Roadmapping

Selected decarbonisation technologies

Supporting technologies: CO₂ capture, hydrogen production

Decarbonisation technology route roadmaps - direct reduction

Direct reduction routes

- □ Technology routes based on direct reduction processes
- □ Share of hydrogen as a partial substitute for natural gas can be increased stepwise (towards 100 % hydrogen-based reduction)
- CO₂ mitigation potential of this routes almost 100 % (compared to BF-BOF route)

Framework conditions

- □ Reduction behaviour at 100 % H₂
- □ Energy system without or with minimal carbon input
- □ Strengthening of high-voltage grids
- □ Availability and price of green electricity and hydrogen
- □ Hydrogen transport and storage infrastructure

Framework conditions						
Funding of CAPEX & OPEX						
Emission related legislation						
Carbon Contracts for Difference						
Price of natural gas						
	Availability of renewable energy					
	Availability of hydrogen					
Market conditions of green steel						
	Availability of raw materials					
Investment needs & TRL						
€ 150 M for pilot plant	€ 750 M for demo plant for deployment					
TRL 4-8	TRL 9 TRL 7-9					
	Industrial deployment					
2020 Short-term 2030	2030 Mid-term 2040 2040 Long-term 2050	2050				

---- critical ---- less critical ---- not critica

Decarbonisation Barriers – rating of relevance by stakeholders

Relevance of barriers categories as rated in the stakeholder consultations

Scale: 1 (not important) to 5 (high importance)

- Utilisation of different metrics:
 - Average value ("Avg.")
 - CO₂-weighted value ("CO₂") (weighted by CO₂ allocations of stakeholders within ETS)
 - Error Bars contain at least 50% of answers

#	Decarbonisation Barrier Category	2030		2050	
		Avg.	CO ₂	Avg.	CO ₂
1	Financial barriers	4.5	4.2	4.3	4.0
2	Policy / Social barriers	3.7	3.5	3.9	3.9
3	Technical barriers	3.4	3.4	3.0	3.4
4	Organisational barriers	3.3	3.0	2.8	2.7

Green Steel – Future Scenarios of decarbonised steelmaking

- ✓ Main barriers (technical/financial/societal) identified:
 - (1) 6 out of 7 highest rankings are <u>financial</u> barriers
 - (2) availability of renewable energy also important
- ✓ Assessment of national <u>boundary conditions</u>:
 - (1) availability of CCS / secondary C / $\rm H_2$
 - (2) natural gas price
 - (3) CO₂ load of electricity
 - (4) plant conditions incl. investment cycles
 - (5) political trends
- ✓ Definition of 3 <u>scenarios</u> for 2030/2050:
 - (1) plausible technology mixes
 - (2) decelerated transformation
 - (3) higher H₂ availability

Influence of energy crisis on steel industry industry decarbonisation

- > <u>natural gas</u> availability and costs have <u>key roles</u> for bridge technologies
- > Russian attack on Ukraine hit European <u>energy supply</u> to the bones
- > investments may be delayed before 2030
- profitability of decarbonisation may benefit after 2030

Roadmaps have to be adapted to new boundary conditions and new views

Aspects of industrial symbiosis for decarbonisation of steel industry

- > infrastructures and supply with renewable energy (RE):
 - > electricity: CO_2 footprint and fluctuation of availability and costs
 - > hydrogen: source / CO_2 footprint, costs, availability of H₂ derivates
 - > local RE production or import: resilience vs. costs ?
 - > fast decarbonisation or full optimisation (e.g. source of H_2)?
- > integration of decarbonised energy systems defines costs and availabilities
- material and energy flows along supply chains and across different industries needs numerous adaptions for decarbonisation
- > cross-industrial aspects of industrial decarbonisation
 - > fixed sector decarbonisation targets or free techno-economical development ?
 - > high energy costs change ROIs for many energy/heat usage optimisations

Conclusions

- Steel industry transformation will result in a <u>heterogeneous situation</u> in the next 15 years but H₂ based <u>direct reduction and electrification</u> will play major roles.
- > Boundary conditions are <u>changing</u> and so are decarbonisation roadmaps ...
- > Hard global <u>market setting</u> defines existance and transformation of steel industry.
- Integrated decarbonised <u>energy systems</u> have fundamental importance, but do not yet exist and cannot yet be prognosed in a reliable way.
- Industrial symbiosis has <u>existantial importance</u> for decarbonisation and it needs <u>continuous and holistic</u> coordination and optimisation.

Thank you for your interest !

Thorsten Hauck Head of Department Process Optimisation Iron & Steelmaking thorsten.hauck@bfi.de Tel +49 (0) 160 94972277

Head of Department Process Optimisation Iron & Steelmaking thorsten.hauck@bfi.de Tel +49 (0) 160 94972277

I norsten Hauck

- 1) Prognosis of future local / national <u>framework conditions</u>
- 2) <u>Assessment</u> of framework conditions and coupling with local / national steel production
- 3) Fusion with investment cycles (BF relining) and site-specific information
- 4) Synthesis into basic overall European scenario "Mixed implementation"
- 5) Assessment of $\underline{CO_2}$ mitigation
- 6) <u>Variation</u> of assumed future framework conditions to derive further scenarios